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1. Introduction

The action for a p-brane is comprised of the kinetic term and the WZ (Wess-Zumino)

term [1 – 3]. The WZ term ensures that a local “κ symmetry” is present which means

that only half the fermionic degrees of freedom are physical [4]. The Lagrangian is not

manifestly invariant under the global action of the supertranslation group (it is not “left

invariant”) due to quasi-invariance (invariance up to a total derivative) of the WZ term.

The WZ term is the pullback of a (p+1)-form B which is a potential for a field strength H.

Although H is left invariant, in standard superspace it is impossible to find a left invariant

potential B. In terms of CE (Chevalley-Eilenberg) cohomology [5] this means that H is a

nontrivial cocycle. In fact, H is characterized as the unique nontrivial CE (p + 2)-cocycle

of dimension p + 1 [6]. There are two avenues of research that have resulted from this

fact.

The first area of research concerns topological charge algebras. The Noether charges

associated with left invariance of an action are phase space generators of the left group

action (“left generators”). For manifestly left invariant actions, the algebra of Noether

charges is the same as the underlying algebra of symmetries. This is the ”minimal algebra”

of Noether charges. However, Lagrangians are often quasi-invariant under the action of

symmetry transformations. In this case the Noether charges need to be modified in order

to ensure their conservation. The conserved charges then obey an algebra which is a

modification of the minimal algebra by a topological “anomalous term” [7]. This is the

case for p-brane actions, where quasi-invariance of the WZ term under the action of the

supertranslation group means that the Noether charges satisfy an algebra which is an

extension of the supertranslation algebra by a topological term [8]. In the conventional

formulation of superspace, the fermionic directions have trivial topology [9]. In this case,

the anomalous term simplifies to a form which can be related to PBRS (partial breaking

of rigid supersymmetry) [10, 11]. The algebra of constraints for the action is also modified

in the presence of the WZ term [12]. The constraints can be identified with generators

of the right group action (“right generators”), thus leading to a modified algebra of right

generators. The modified algebras of Noether charges and constraints can also be related
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to a construction involving ghost fields [12]. A BRST style “ghost differential” s acting

on an infinite dimensional “loop superspace” is introduced. The anomalous term is then

the result of solving cohomological descent equations. A similar construction of a finite

dimensional nature has also been considered [13].

In a second line of research, superspaces associated with extensions of the supertrans-

lation algebra have been discovered which allow manifestly left invariant WZ terms to

be constructed for the p-brane action [14 – 16]. The resulting actions can be considered

equivalent to the standard action since the Lagrangians differ only by a total derivative

(and the extra superspace coordinates appear only in this derivative). Due to manifest

left invariance of the Lagrangian, the Noether charges are not modified and they satisfy

the minimal algebra (which in this case reflects the underlying extended supertranslation

algebra). There is partial correspondence with the standard superspace formulation of the

action here. The anomalous term in the standard superspace formulation can be identified

with a corresponding term in the minimal algebra of an extended superspace formula-

tion [16]. However, the full extended superalgebra is not generated in this way. In the

extended superspace formulation there are fermionic Noether charges which complete the

full algebra. However, in the standard superspace formulation, the assumption of trivial

fermionic topology prevents the existence of any analog of these fermionic charges. As

a result, one obtains only the “first line” of the full superalgebra. In this paper we will

show that a full agreement between the algebras of the different action formulations is

possible. In doing so we will also address the fact that there is more than one extended

superspace which allows a manifestly left invariant WZ term to be constructed. Which of

these extended superspaces should be generated by the anomalous term of the standard

action?

There are hints that incorporating fermionic charges (whether they are topological in

nature or arise from fermionic boundary conditions) in brane theory may yield interesting

results. For example, the action of supersymmetries on bosonic charges clearly produces

fermionic charges [17]. Should these charges vanish? Quantizing in the standard flat

background allows one to choose a trivial representation for the fermionic charges. How-

ever, in certain superspaces nonvanishing fermionic charges are actually required [18]. The

construction of topological anomalous terms has always allowed for nontrivial topology

of the bosonic coordinates (otherwise even the classical charges would vanish). However,

the terms that would result from nontrivial fermionic topology have usually been omit-

ted.

In this paper we investigate p-brane superalgebras by focussing on the underlying

double complex cohomology of the anomalous terms. A number of new results follow.

The anomalous terms of the algebras of left/right generators are shown to derive from

representatives of a single complex cocycle associated with the p-brane. The presence of

gauge freedom for these representatives leads to the identification of a new freedom in the

anomalous term of the Noether charge algebra. It follows that this anomalous term is not

well defined as a form, but as an entire cohomology class [M ]. In the standard superspace

background, [M ] is shown to be a unique, nontrivial class which may be constructed on the

basis of the same dimensionality and Lorentz invariance requirements used to construct
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H in [6]. It is also shown that [M ] defines a spectrum of extended superalgebras. When

fermionic charges are allowed, these superalgebras are realized as the topological charge

algebras of the action.

The construction is then applied to the GS (Green-Schwarz) superstring. The topolog-

ical charges are identified as extra generators of the Noether charge algebra. The resulting

topological charge algebra is shown to be a one parameter spectrum of extended super-

algebras. When fermionic charges are retained, this spectrum contains three extended

algebras of interest. The first is an algebra developed by Green, which has a fermionic

“central” extension [19]. The second is an algebra which extends the Green algebra by a

noncentral bosonic generator. Both of these algebras have been used to construct string

Lagrangians that have manifest left invariance, and are thus of physical significance [14 –

16]. The third algebra, which is of the type considered in [17, 18], results from the ac-

tion of supersymmetry on the bosonic charge. It thus emerges naturally that if fermionic

charges are retained, all the known extended algebras of the superstring appear in the

spectrum of topological charge algebras of the standard action. Since the spectrum is

not simply obtained by rescaling known algebras, new superalgebras also result from the

process.

The structure of this paper is as follows. In section 2 our conventions are outlined

and the properties of p-branes are reviewed. The extended superspaces used for the GS

superstring are also presented. In section 3 the ghost differential s is defined, and is then

used to define a superspace double complex. An exactness theorem for s is presented, and

a total differential D is defined which is shown to evaluate the CE cohomology of the WZ

term. It is shown that the p-brane has a naturally associated D cocycle which is defined by

the (p+2)-form H. In section 4 the construction of topological anomalous terms is reviewed

in a fully integrated approach. It is shown that the anomalous term defines an extension

of the underlying superalgebra by an ideal. Modified generators of the right action are

defined. The resulting modified algebra is shown to derive from the representative H

of the p-brane D cocycle. The relationship between the right generator algebra and the

constraint algebra is given. Cohomological properties of the anomalous term that follow

from the CE properties of H are presented in two theorems. The first theorem defines

the anomalous term as a cohomology class. The second theorem states that in standard

superspace this class can be constructed using uniqueness of the cocycle and dimensional

analysis. In section 5 the construction is applied to the GS superstring. Both standard and

extended superspace actions are investigated. We point out that the reader may find it

helpful to read the explicit examples of this section in conjunction with the general theory

of the preceding sections. The algebra of right generators and the constraint algebra are

evaluated. Both are shown to agree with the cocycle construction. The topological charge

algebra is found by solving the descent equations. The most general gauge transformation

of the anomalous term is shown to contain a single degree of freedom. This freedom is used

to generate a spectrum of algebras that includes the known extended superalgebras of the

superstring. Properties of the extended superspace actions are shown to be consistent with

the general construction. In section 6 some comments on future directions for research are

made.
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2. Preliminaries

2.1 p-branes

The superalgebra of the supertranslation group is:1

{Qα, Qβ} = Γa
αβPa. (2.1)

The corresponding group manifold can be parameterized:

g(Z) = exaPaeθαQα , (2.2)

where Z is the combined notation for coordinates:

ZA = {xa, θα}.

This group can be constructed as the coset space consisting of the super-Poincaré algebra

modulo the Lorentz subgroup, however for our purposes this is an unnecessary complica-

tion. In this paper it is valid to assume that expressions are Lorentz invariant if upper

indices are contracted with lower ones.

The left vielbein is defined by:

L(Z) = g−1(Z)dg(Z) (2.3)

= dZMLM
A(Z)TA,

where TA represents the full set of superalgebra generators. The right vielbein is defined

similarly:

R(Z) = dg(Z)g−1(Z) (2.4)

= dZMRM
A(Z)TA.

The left group action is defined by:

g(Z ′) = g(ε)g(Z), (2.5)

where εA is an infinitesimal constant. The corresponding superspace transformation is

generated by the operators:

QA = RA
M∂M , (2.6)

where RA
M are the inverse right vielbein components, defined by:

RA
MRM

B = δA
B. (2.7)

1The charge conjugation matrix will not be explicitly shown. It will only be used to raise/lower indices

on gamma matrices, which have the standard position Γα
β. Γαβ is assumed to be symmetric. Majorana

spinors are assumed throughout (thus, for example, θα = θβCβα).
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QA are generators of the left group action, and will be referred to as the “left generators.”

Forms that are invariant under the global left group action will be called “left invariant.”

The vielbein components LA are left invariant by construction. Their explicit structure is:

La = dxa − 1

2
dθΓaθ (2.8)

Lα = dθα.

Indices A,B,C,D will be used to indicate components with respect to this basis, while

M,N,L, P will be used for the coordinate basis. The right group action is defined by:

g(Z ′) = g(Z)g(ε). (2.9)

The corresponding superspace transformation is generated by the operators:

DA = LA
M∂M , (2.10)

where LA
M are the inverse left vielbein components, defined by:

LA
MLM

B = δA
B . (2.11)

DA are generators of the right supertranslation group action, and will be referred to as the

“right generators.” They are also commonly known as “supercovariant derivatives” since

they commute with the left generators as a result of the associativity of group multiplica-

tion. However, unlike the QA they do not generate global symmetries of the action. The

left and right vielbein and inverse vielbein components have been evaluated and placed in

appendix A.1 for reference.

The NG (Nambu-Goto) action for a p + 1 dimensional manifold embedded in the

background superspace is:

S = −
∫

dp+1σ
√−g. (2.12)

The integral is over the p + 1 dimensional “worldvolume,” which has coordinates σi and is

embedded in superspace. The worldvolume metric gij is defined using pullbacks of the left

vielbein:

Li
A = ∂iZ

MLM
A (2.13)

gij = Li
aLj

bηab,

and g denotes det gij . A p-brane is the κ-symmetric generalization of the NG action. The

p-brane action is:

S = −
∫

dp+1σ
√−g +

∫
B. (2.14)

The first term of the action is the “kinetic” term. The second term is the WZ term, which

is the integral over the worldvolume of the pullback of a superspace form B. B is defined

by the property2:

dB = H (2.15)

∝ dθαdθβLa1 . . . Lap(Γa1...ap)αβ .

2Wedge product multiplication of forms is understood.

– 6 –



J
H
E
P
0
1
(
2
0
0
6
)
1
5
2

The proportionality constant depends on p and is determined by requiring κ symmetry of

the action. There are certain identities required to ensure the consistency of this definition.

Firstly, closure of H requires a Fierz identity:

Γ[a1...ap]
(αβΓapδε) = 0. (2.16)

This condition on the gamma matrices can only be satisfied for certain combinations of p

(spatial dimension of the brane) and d (superspace dimension) [20]. The allowed values of

(p, d) (called the “minimal branescan”) are such that:

(Γ[a1...ap])αβ = (Γ[a1...ap])βα. (2.17)

This ensures that H can be nonzero.

2.2 Green algebra

The p-brane action (2.14) can also be used in extended superspace backgrounds. In the

general construction we will not specify the background being used in order to allow for this

possibility3. In section 5 we will consider the GS superstring in both standard and extended

superspaces. There are two known extended superspaces which allow the construction of

manifestly left invariant superstring WZ terms. The first is described by a superalgebra

that was introduced by Green [19]. It has a fermionic generator Σα that defines a central

extension of the supertranslation group4:

{Qα, Qβ} = Γa
αβPa (2.18)

[Qβ, Pa] = ΓaβγΣγ .

The corresponding group manifold can be parameterized5:

g(Z) = exaPaeθαQαeφβΣβ

, (2.19)

where:

ZA = {xa, θα, φα}.
Standard superspace is obtained by omitting the extra generator Σα (and its associated

coordinate φα). The resulting left vielbein components are:

La = dxa − 1

2
dθΓaθ (2.20)

Lα = dθα

Lα = dφα − dxb(Γbθ)α +
1

6
dθΓbθ(Γbθ)α.

The left and right vielbein and inverse vielbein components for the Green algebra have

been evaluated and placed in appendix A.2.

3However, extended backgrounds that are extensions of standard superspace by an ideal are most nat-

urally applied (see appendix A.4). The extended algebras associated with p-branes have this property.
4Of course, when Lorentz generators are included, Σα is no longer central.
5Parameterizations are not unique. In particular we note the Green algebra can alternatively be param-

eterized to yield a linear realization of the left group action [21].
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2.3 Extended Green algebra

Addition to the Green algebra of a noncentral bosonic generator Σa results in the extended

Green algebra [15, 16]:

{Qα, Qβ} = Γa
αβPa + ΓaαβΣa (2.21)

[Qβ, Pa] = ΓaβγΣγ

[Qβ ,Σa] = Γa
βγΣγ .

The Green algebra results from the reduction:

P ′
a = Pa + ηabΣ

b (2.22)

Σ′α = 2Σα,

where ηab is the Minkowski metric. The extended Green algebra group manifold can be

parameterized:

g(Z) = exaPaeybΣ
b

eθαQαeφβΣβ

, (2.23)

with coordinates6:

ZA = (xa, θα, ya, φα).

The left vielbein components are found to be:

La = dxa − 1

2
dθΓaθ (2.24)

Lα = dθα

La = dya −
1

2
dθΓaθ

Lα = dφα − dxb(Γbθ)α − dyb(Γ
bθ)α +

1

3
dθΓbθ(Γbθ)α.

The left/right vielbein and inverse vielbein components for the extended Green algebra

have been evaluated and placed in appendix A.3.

3. Double complex for the p-brane

3.1 Cocycles from WZ terms

The exterior derivative d together with the space of differential forms constitutes the de

Rham complex. The operator d is nilpotent (i.e. d2 = 0) and can therefore be used to

define cohomology classes. The n-th de Rham cohomology is the set of equivalence classes:

Hn
d = Zn/Bn (3.1)

where Zn are the closed n-forms (i.e. those in the kernel of d) and Bn are the exact n-forms

(those in the image of d). The de Rham complex can be extended into a double complex

6Coordinate indices will not be raised/lowered in this paper. In the notation being used {Za, Zα, Za, Zα}

are all independent coordinates.
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by the addition of a second nilpotent operator that commutes with d. The operator used

in this paper is a “ghost differential” s. This operator was introduced in [12] acting on an

infinite dimensional “loop superspace.” We now define the analogous operator for use on

finite dimensional superspaces. The introduction of a ghost partner eA for each coordinate

is required. The ghost fields have the opposite grading to coordinates:

[eA, ZM} = 0 (3.2)

{eA, eB ] = 0,

where [ , } and { , ] are the graded commutator/anticommutator:

[XA,XB} = −(−1)AB [XB ,XA} (3.3)

{XA,XB ] = (−1)AB{XB ,XA].

They are independent of the fields ZM , and hence satisfy deA = 0. A general element

of the double complex is a “ghost form valued differential form.” The space of all such

“generalized forms” of differential degree m and ghost degree n will be denoted by Ωm,n.

The collection of these spaces will be denoted Ω∗,∗. Generalized forms Y ∈ Ωm,n will be

written using a comma to separate ghost indices from space indices:

Y = eBn . . . eB1LAm . . . LA1YA1...Am,B1...Bn

1

m!n!
. (3.4)

We then define the ghost differential by the following properties:

• s is a right derivation7. That is, if X and Y are generalized forms and n is the ghost

degree of Y then:

s(XY ) = Xs(Y ) + (−1)ns(X)Y. (3.5)

• If X has ghost degree zero then:

sX = eAQAX. (3.6)

QA denotes a Lie derivative with respect to the vector field (2.6) associated with the

global left action.

•
seA =

1

2
eCeBtBC

A, (3.7)

where tBC
A are the structure constants of the superalgebra associated with the back-

ground superspace (we henceforth refer to this superalgebra as the “background su-

peralgebra”).

One verifies that8:

s2 = 0 (3.8)

[s, d] = 0.

7Our conventions are such that d is also a right derivation (with respect to the differential degree).
8To prove nilpotency of s one needs to use the Jacobi identity for the background superalgebra.
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-

6
3 dB

2 B ♦
↑ 1 W ♦
d 0 N sN

0 1 2 3

s →

Figure 1: Descending sequence for the string.

Hence s extends the de Rham complex into a double complex. s is similar to a BRST

operator in that it requires the introduction of ghost fields; however unlike a BRST operator

it has not been derived from constraints or gauge symmetries.

There is a total differential D that is naturally associated with the double complex:

D = s + (−1)n+1d (3.9)

D2 = 0,

where n is the ghost degree of the generalized form upon which D acts. The spaces Ωl
D of

the single complex upon which D acts are the sum along the anti-diagonal of the spaces of

the double complex:

Ωl
D = {⊕Ωm,n : m + n = l}. (3.10)

The l-th cohomology of D is:

H l
D = Z l

D/Bl
D, (3.11)

where Z l
D are the D closed generalized l-forms (“D cocycles”), and Bl

D are the generalized

l-forms in the image of D (“D coboundaries”). The restriction of H l
D to representatives

within Ωm,l−m will be denoted Hm,l−m. The representatives of Hm,0 can be used to define

descending cohomology sequences. We now illustrate this for the (p + 2)-form H that

defines the WZ term.

Firstly, H is a left invariant, closed form with ghost number zero. It is therefore closed

under both s and d. Using the fact that s and d commute, sH = 0 implies that dsB = 0,

and thus sB = −dW for some W ∈ Ωp,1. This argument does not apply globally, but is

valid on every coordinate patch9. The same logic that was applied to B can then be applied

to W . This gives sW = dN for some N ∈ Ωp−1,2. For the string, the last nonzero element

of the sequence is sN ∈ H0,3. For a p-brane, the sequence continues until we reach an

element of H0,p+2. The descending cohomology sequence can be graphically depicted using

a “tic-tac-toe box” [22]. The string case is depicted in figure 1. The symbol ♦ indicates

9The fields of the double complex can be viewed as Cech cochains. In this case an expression like dB

represents something closed but not necessarily exact. The de Rham triviality of such fields does not affect

the double complex cohomology studied in this paper.
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“zero with respect to the operator D.” Precisely, for a p-brane, denote the “potentials” of

the sequence by Bp+1−m,m (e.g. W = Bp,1). Then each ♦ represents a relation:

sBp−m+1,m + (−1)mdBp−m,m+1 = 0. (3.12)

These are the “descent equations” (note that the first descent equation, not represented in

the above, is H = dBp+1,0).

We have defined the tic-tac-toe construction on the double complex so that its end-

points would be linked via a coboundary of the D complex. For example, in the string

case:

−dB ⊕ sN = D(B ⊕ W ⊕ N). (3.13)

That is, H = dB ∈ H3,0 is D cohomologous to sN ∈ H0,3. We may write this as:

H ' sN.

In general one finds that:

H ' sBp+1−m,m ∀m. (3.14)

The D cocycle represented by H can therefore be alternatively represented by s acting on

any of the potentials of the sequence.

We will call a nilpotent operator “exact” if its associated cohomology is trivial. For

example, the de Rham differential d on an open set is exact; the cohomology Hd is trivial

as a result of the Poincaré lemma. That is, given Y ∈ Hm
d , then for all m ≥ 1 we can

write Y = dX for some X ∈ Ωm−1
d . Note that the “exactness” of an operator is dependent

on the space upon which it acts. By definition, d is not exact (globally) on a manifold

that possesses nontrivial de Rham cohomology. There are important consequences for D

cohomology if we can show that the ghost differential s is exact.

3.1.1 Exactness theorem

s is exact on open sets.

To prove this we find a chain map for which the operators s and d become “dual” to

each other. A chain map between two complexes is one that commutes with the differentials

of the complexes. In our case, the required chain map Ψ must satisfy:

Ψ(d)Ψ(Y ) = Ψ(dY ) (3.15)

Ψ(s)Ψ(Y ) = Ψ(sY )

for any Y ∈ Ω∗,∗. The chain map is the “check map” defined by:

Ψ : Ω∗,∗ → Ω̌∗,∗ (3.16)

LA → eA

eA → RA.

The map takes (m,n)-forms to (n,m)-forms. On Ω̌∗,∗ we have the operators š and ď

defined by:
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•
š = d. (3.17)

• ď is a right derivation.

• If X has ghost degree zero then:

ďX = eADAX, (3.18)

where DA is a Lie derivative with respect to the vector field (2.10) associated with

the global right action.

•
ďeA = −1

2
eCeBtBC

A. (3.19)

If we think of s as a generalized left variation, then ď is the analogous right variation. The

check map is clearly invertible. Let Y be any s closed generalized form of ghost degree one

or more over an open set. Then, using š = d and the exactness of d on an open set, one

shows that Y is an s coboundary:

sY = 0 (3.20)

⇒ šY̌ = 0

⇒ Y̌ = šX̌

⇒ Y = sX.

Therefore s is exact on open sets since we have Hm
s = Hm

d .

In [6] it was shown that CE cohomology can be restated as the restriction of de Rham

cohomology to left invariant forms. Now, the (p+2)-form H is a D coboundary when it can

be written H = DB. Equivalently, H is a D coboundary if a left invariant potential B can

be found. This is precisely the definition of a trivial CE cocycle. A nontrivial D cocycle

is one for which we must necessarily have sB 6= 0, which is equivalent to the definition of

a nontrivial CE cocycle. CE cohomology is therefore the restriction of D cohomology to

forms that have ghost degree zero. HD is the natural extension of CE cohomology into the

double complex Ω∗,∗. Since s is exact, we may reverse descending tic-tac-toe sequences into

ascending ones, starting with any element of HD and finding an associated left invariant

element of Hd. This establishes an isomorphism between HD and CE cohomology that

would not exist if s were not exact.

3.2 Gauge freedom

Using the tic-tac-toe construction, the form H ∈ Hp+2,0 may be identified with any of

the other representatives sBp+1−m,m of the p-brane D cocycle. This is a well defined map

between Hm,n cohomologies, but not between the forms themselves. In general there is

gauge freedom for representatives. Although this freedom is associated with D cobound-

aries, there is no reason for these coboundaries to be exact. In this way we will see that

the gauge freedom can affect the topological charge algebra.
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We now explicitly derive the gauge transformations for the string. Consider the relation

H = dB. Given H, this defines B only up to a closed form. Thus, given a solution B, the

alternative solution B′ = B − dψ is equally valid. We write this as:

∆B = −dψ. (3.21)

In an extended superspace that allows a manifestly invariant WZ term, a transformation

of this type is all that separates the standard WZ term from the invariant one (see section

5 for an explicit example). What then is the effect of the transformation (3.21) on W ?

Since the variation ∆ commutes with s and d, we have:

d∆W = ∆dW (3.22)

= −∆sB

= dsψ.

The general solution may be written:

∆W = sψ + dλ, (3.23)

where λ is a new gauge field. The gauge transformations of the field N are derived similarly.

Directly from (3.23) we have:

d∆N = ∆dN (3.24)

= ∆sW

= dsλ.

This has the general solution:

∆N = sλ + C, (3.25)

where C is a d closed (0, 2)-form. If one progressed in the other direction (an ascending

sequence starting from sN) one would also find an s closed (2, 0)-form gauge field C ′ for

B. One can then write the gauge transformations in totality as:

∆(B ⊕ W ⊕ N) = D(ψ ⊕ λ) ⊕ C ⊕ C ′. (3.26)

One verifies that each potential has two gauge fields: one that is d closed and one that

is s closed. These gauge transformations are additive. For example, the field W has two

gauge transformations: one for ψ and one for λ, with ∆W given by (3.23). The gauge

fields are independent (they are not required to satisfy descent equations like those that

relate B, W and N). They may also affect more than one field. For example, ψ is a

transformation that leaves dB invariant (∆B = −dψ), and also sW invariant (∆W = sψ).

Although sB and dW are not gauge invariant, the ψ transformation is such that the descent

equation sB = −dW is true in all gauges. The construction ensures that in general,

descent equations are preserved by the gauge transformations. The gauge transformations

are identically the same as the D coboundaries as a result of the exactness of the operators

s and d. The alternative representatives sB, sW and sN of the D cocycle defined by H

are therefore well defined elements of their Hm,n cohomologies.
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4. Algebra modifications

4.1 The algebra of left generators

The action is formulated in terms of (ZM , ŻM ), which may be viewed as coordinates for

the superspace tangent bundle. The Hamiltonian formulation of dynamics is cast in terms

of coordinates ZM and their associated conjugate momenta PM , which together constitute

the “phase space.” The momenta are defined by:

PM =
∂L

∂ŻM
. (4.1)

The phase space can be viewed as coordinates for the superspace cotangent bundle. The

Lagrangian then provides a map (a Legendre transform), defined by (4.1), from the tangent

bundle to the cotangent bundle.

We use the following fundamental (graded) Poisson brackets on phase space10:

[PM (σ), ZN (σ′)} = δM
Nδ(−→σ −−→σ ′), (4.2)

where it is assumed σ′0 = σ0 (i.e. equal time brackets). The Dirac delta function notation

is shorthand for the product of the p delta functions on the spatial coordinates of the

worldvolume. One can use (4.2) and the following Poisson bracket identities to evaluate

general brackets:

[XA,XBXC} = [XA,XB}XC + (−1)ABXB [XA,XC} (4.3)

[XA,XB(Y )} = [XA, Y N}∂XB

∂Y N
.

The above relations can all be derived from an integral form of the Poisson bracket, which

can be useful for certain proofs. The form we use is:

[XA,XB} =

∫
dpσ

δXA

δPM (σ)

δXB

δZM (σ)
(−1)MA+M − (−1)AB [A ↔ B]. (4.4)

We define the following regularly used “bar map” by its action on superspace forms:

Y
m−p,n

(σ) = (−1)p(p+m+1)i∂1
. . . i∂pY

m,n(σ). (4.5)

Here, iV denotes interior derivation with respect to the vector V , and ∂i is the i-th world-

volume tangent vector. When Y ∈ Ωp,n we will also indicate an integrated version of this

map using the same symbol:

Y
0,n

=

∫
dpσY

0,n
(σ). (4.6)

Even though we may omit the argument in (4.5), it should be clear within context which

of these maps is implied. We now show that this map generates the algebra modifications

of the p-brane from its associated D cocycle.

10Brackets of unspecified type will in general be Poisson brackets. Exceptions should be clear within

context.
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The Noether charges associated with a manifestly left invariant Lagrangian will be

denoted QA. One finds11:

QA =

∫
dpσRA

MPM . (4.7)

These charges are the phase space analog of the left generators (2.6). They satisfy the

same algebra as the background superalgebra, but with the sign reversed:

[QA, QB} = −tAB
CQC . (4.8)

This is the “minimal algebra.” In general, the p-brane Lagrangian is not manifestly left

invariant (i.e. it is only symmetric up to a total derivative) due to quasi-invariance of the

WZ term. Using the definitions of section 3.1, the variation of the WZ form is QAB =

−dWA. From this we have:

QAL = QALWZ (4.9)

= ∂iwA
i,

where

wA
i = − 1

p!
ε̃ip...i1iWi1...ip,A (4.10)

and ε̃ is the antisymmetric Levi-Civita symbol. Now, upon using the EL (Euler-Lagrange)

equations:
∂L

∂ZM
− ∂i

∂L
∂(∂iZM)

= 0, (4.11)

we have identically:

QAL = ∂i

[
QAZM ∂L

∂(∂iZM)

]
. (4.12)

Hence, “on-shell” there are conserved currents:

q̃A
i = QAZM ∂L

∂(∂iZM)
− wA

i (4.13)

∂iq̃A
i = 0.

The associated conserved charges are:

Q̃A = QA + WA. (4.14)

Using (4.14), the Q̃A obey a modified version of the minimal algebra:

[Q̃A, Q̃B} = −tAB
CQ̃C + MAB , (4.15)

with

MAB = [QA,W B} + [WA, QB} + tAB
CW C . (4.16)

11“Bar” above QA or DA is a definition, not an action of the map (4.5). The notation indicates that QA

and DA naturally act upon elements in the image of this map.
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This is the algebra of conserved charges. Now define the special representative M = sW of

the p-brane D cocycle. The definition of M given here agrees with that obtained from the

bar map (4.6) acting upon M . We refer to both M and M as “anomalous terms.” If we

need to distinguish between the two, M will be referred to as the “topological anomalous

term”, and M as its “superspace representation.” The bar map ensures that elements in

its image contain no time derivatives, or equivalently no dependence upon the phase space

momenta. The anomalous term M then results from Poisson brackets involving at most

one momentum variable, which leads to a simplified structure.

One verifies that:

MAB = (−1)p
∫

dpσMp...1,AB(σ) (4.17)

= (−1)p
∫

Φ∗MAB ,

where the map Φ embeds the spatial section of the worldvolume into superspace. We

assume that the spatial section is a closed manifold. MAB is therefore just a topological

integral over the spatial section of the closed p-form MAB. The result of the integral will

be determined by the topology of the spatial section, and the class of the associated de

Rham cohomology to which MAB belongs.

In prior literature the topological anomalous term was found to be proportional to the

pullback of the p-form [8]:

Γm1...mpαβdxm1 . . . dxmp . (4.18)

A current associated with this form can be defined, and this current is conserved identically

since the form is closed (see (4.20) below). However, this structure for the anomalous term

assumes that integrals of the form:

∫
dσ1∂1Y (θ) (4.19)

vanish, where Y is an arbitrary function. This amounts to the requirement that the

fermionic directions (corresponding to the coordinates θ) must have trivial topology. The

topological integrals of closed forms with θ differentials and single valued coefficients must

vanish in this case. However, recent work [18] suggests that for certain spaces more general

than flat superspace, fermionic charges in the modified algebra are required on the basis

of Jacobi identities. In flat space it is consistent to set the fermionic charges to zero but

in other spaces this can cause inconsistencies. Although we assume flat background spaces

in this work, we will formally allow nonvanishing fermionic charges in order to see which

features appear as a result. Since M is still derived from a closed form, the associated

current is still conserved identically:

mi
AB = ε̃ip...i1iMi1...ip,AB

1

p!
(4.20)

∂im
i
AB = ε̃ip...i1i∂i∂i1Ni2...ip,AB

1

(p − 1)!

= 0.
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There is no obvious reason to expect that it should be possible to incorporate the topo-

logical anomalous term M into the definition of an extended algebra. However, using its

superspace representation M we now show that this is indeed possible. In section 5 we will

explicitly derive the extended algebras that result from the superstring anomalous term.

4.1.1 Closure theorem

The anomalous term of the Noether charge algebra defines an extension of the background

superalgebra by an ideal. The resulting extended superalgebra is solvable.

Firstly we need to show closure of the algebra. This requires that the anomalous

term, and all brackets resulting from it, can be expressed using a finite number of new

generators. To find the extended algebra one could investigate the Poisson brackets of

Q̃A and MAB. However, one can equivalently use the double complex. In this case the

anomalous term is represented by a set of superspace forms MAB (one for each bracket of

the minimal algebra). The minimal algebra is generated by the left generators QA of the

double complex. Define the modified left generators as:

Q̃A = QA + WA. (4.21)

The Poisson bracket algebra generated by Q̃A and M is found to be the same as the

“operator-form” algebra generated by Q̃A and M (forms are assumed to commute with

other forms). We therefore use the operator-form algebra since it is more convenient. If

required, the Poisson bracket algebra can be obtained by replacing all generators with

barred ones in the operator-form algebra. Let G = {QA} denote the minimal algebra,

and G̃ = {Q̃A,ΣA} denote the full algebra that is assumed to result by addition of the

anomalous term. Now consider the following schematic representation of the action of the

left generators on forms12:

x → θ → const → 0

dx → dθ → 0.

If a form has coefficients with a polynomial structure then each action of QA brings it

closer to annihilation. The requirements of Lorentz invariance and fixed dimensionality

(see section 4.3) ensure that all valid forms have this polynomial structure. It follows

that the anomalous term will be annihilated by the left generators in a finite number of

steps. There is then a stepwise process to define the extended algebra. At the first step

we may factor out any Lorentz invariant tensors from MAB (which become new structure

constants). The remaining form is then written in terms of a minimal set of independent

closed forms ΣA, which become new generators of the algebra. The ΣA commute with

themselves and satisfy:

[Q̃A,ΣB} = [QA,ΣB} (4.22)

since WA commutes with ΣB . We then act again with the QA and introduce new generators

to deal with any forms that cannot be written in terms of those generators previously

defined. By the above annihilation argument it follows that this process is finite. That is,

12For this proof we will assume for brevity that G is the standard superalgebra. The same principles are

also valid in the case where G is one of the extended superalgebras (e.g. those of section 2).
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there will be a finite number of new generators. The resulting algebra has the structure:

[Q̃, Q̃] ⊂ Q̃ ⊕ Σ (4.23)

[Q̃,Σ] ⊂ Σ

The second line shows that Σ is an ideal of the new algebra. The algebra G̃ is said to be

solvable if:

(AdeG
)m(G̃) = 0 (4.24)

for some finite integer m, where AdeG
is the adjoint action. The minimal algebra G is

solvable. The annihilation argument shows that G̃ is also solvable, since the action of G̃
annihilates the new generators in a finite number of steps.

This shows that the new algebra closes, however to show that G̃ is a valid superalgebra

we must also show that the super-Jacobi identities are satisfied. There are four cases to

test. The first is:

(−1)AC [Q̃A, [Q̃B , Q̃C}} + cycles, (4.25)

where “cycles” indicates the terms obtained from two repetitions of the cycling A → B →
C. Using M = sW one can show that this reduces to:

(−1)ACtBC
DtAD

EQE + cycles, (4.26)

which vanishes since the original structure constants satisfy the Jacobi identity. The second

case is:

(−1)AC [Q̃A, [Q̃B ,ΣC}} + cycles. (4.27)

By (4.22) it is valid to replace Q̃ by Q in the above expression since Σ is an ideal. The

Jacobi identity is then identically satisfied since it reflects an action of the minimal algebra.

The final two cases:

(−1)AC [Q̃A, [ΣB ,ΣC}} + cycles(−1)AC [ΣA, [ΣB ,ΣC}} + cycles (4.28)

are trivially satisfied. The Jacobi identity therefore holds, and G̃ is an extended superal-

gebra.

4.2 The algebras of right generators and constraints

4.2.1 The algebra of right generators

The right generators and their algebra are modified in a similar way to the left generators.

The minimal right generators for the phase space are:

DA = LA
MPM . (4.29)

The DA satisfy the minimal algebra:

[DA(σ),DB(σ′)} = δ(−→σ −−→σ ′)tAB
CDC(σ). (4.30)

– 18 –



J
H
E
P
0
1
(
2
0
0
6
)
1
5
2

If a WZ term is added to the NG action, the new momenta are related to the NG action

momenta P
(NG)
M via:

PM = P
(NG)
M + BM . (4.31)

The WZ term of the Lagrangian may be written in terms of B as:

LWZ = ŻMBM . (4.32)

We define the modified right generators for the phase space such that they are constructed

from the NG momenta:

D̃A = LA
MP

(NG)
M (4.33)

= DA − BA.

This is motivated by the modification of the standard superspace action constraints in the

presence of the WZ term [12], and the relation of constraints to right generators (see section

4.2.2). Again, the components of B contain no time derivatives. Thus, the modification

to the right generators for the phase space contains no momentum dependence (just as in

the left generator case). If one imposes a condition that B must be single valued then the

modified algebra derives from H:

[D̃A(σ), D̃B(σ′)} = δ(−→σ −−→σ ′)[tAB
CD̃C − HAB](σ). (4.34)

This shows that the result stated in [12] for the standard superspace action also holds for

extended superspace actions. The bar map is again seen to commute with the bracket

operation:

δ(−→σ −−→σ ′)HAB(σ) = [DA(σ), BB(σ′)} + [BA(σ),DB(σ′)} (4.35)

−δ(−→σ −−→σ ′)tAB
CBC(σ).

4.2.2 The algebra of constraints

The p-brane action (2.14) yields constraint equations for the phase space variables. That

is, equations of the form:

CM (Z,P ) = 0 (4.36)

for some functions CM , which reduce to identities once the definitions (4.1) of momenta

are used. This results in a reduction of phase space. For the content of this paper it will

only be necessary to find (not eliminate) the constraints.

Evaluating ∂L
∂ẋm and ∂L

∂θ̇µ
for the NG action one finds:

P (NG)
m = −(−g)−

1

2 g0iLi
aηam (4.37)

P (NG)
µ = −1

2
(Γnθ)µP (NG)

n .

One thus identifies the fermionic constraints of the NG action as:

Cα = δα
µP (NG)

µ +
1

2
(Γnθ)µP (NG)

n (4.38)

= Lα
MP

(NG)
M .
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Comparing with (4.29) we see that these are just the odd, minimal right generators for the

phase space. The Cα thus satisfy the algebra:

{Cα(σ), Cβ(σ′)} = δ(−→σ −−→σ ′)tαβ
ADA(σ). (4.39)

Upon the addition of a WZ term, the momenta (including those associated to new coordi-

nates) pick up the extra terms BM as in (4.31). It will be assumed that the background

superspace is either standard superspace, or an extension of standard superspace by an

ideal (e.g. the superalgebras of section 2). We find that the constraints C̃A in the presence

of the WZ term can then be written:

C̃A = LA
M (PM − BM ), A 6= a. (4.40)

Details of the calculation may be found in appendix A.4. Thus, the constraints C̃A (where

A 6= a) are the modified right generators for the phase space (4.33), and their algebra is

the same:

[C̃A(σ), C̃B(σ′)} = δ(σ − σ′)[tAB
CD̃C − HAB ](σ). (4.41)

Note that although there is no constraint C̃a, D̃a can still appear on the RHS.

The constraint surface must be invariant under the action of the Noether symmetries

of the action. The constraints must therefore be left invariant in the sense:

[QA, Cβ(σ)} ≈ 0, (4.42)

where ≈ means “equal on the constraint surface.” For the NG action this is an example (in

PB form) of the commutativity of the left and right actions. When the WZ term is added,

this condition must continue to hold (i.e. upon replacing QA and CA by their modified

counterparts). In fact, if one assumes that W is single valued then one can use the descent

equation sB = −dW to show:

[Q̃A, D̃B(σ)} = 0. (4.43)

This generalizes a result in [12] for the standard background to the case of extended back-

grounds. Since the constraints are a subset of the modified right generators, their left

invariance is guaranteed by the double complex cohomology. Furthermore, since the equa-

tion sB = −dW is preserved by the gauge transformations, the left invariance of the

constraints is independent of the gauge.

4.3 Cohomology of algebra modifications

We are now in a position to determine how gauge freedom affects the algebras of left/right

generators. Before proceeding however, we need to establish some facts about the D

cohomology of H. First let us review why the equation (2.15) defining H takes the form it

does. H must have the following properties:
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4.3.1 Properties of H

• H is closed.

• H is left invariant.

• dim H = p + 1.

• H is Lorentz invariant.

In standard superspace, H is the unique p + 2 form (up to a constant of proportionality)

with the properties 4.3.1 [6]. Furthermore, it is a nontrivial CE cocycle. In the double

complex construction this implies that in standard superspace, H is the unique Lorentz

invariant element of Hp+2,0 with dimension p+1. One can verify that the last two items in

the list 4.3.1 are preserved by the operators d and s. We conclude that Lorentz invariance

and dimensionality p+1 must be a property of all elements of the double complex (including

potentials and gauge transformations). The exactness of s means that the D cohomology

of the single complex is equal to the de Rham cohomology of the first column of the double

complex. Since we should restrict ourselves to Lorentz invariant forms of dimension p + 1,

by the uniqueness of H, this cohomology is equal to the field of scalars we are using (the

constant of proportionality multiplying H labels the class).

The uniqueness of H implies that the modification to the right generator algebra H is

also unique. It is gauge invariant, and even independent of the background superalgebra

used (since the same definition of H is always used). Note however that the right generator

algebra obtained in an extended background can be different to the right generator algebra

obtained in standard superspace (even though the modification is the same) because then

the minimal algebra that we start with is already different.

The left generator algebra is less straightforward. Note that due to nilpotency of

the operators, moving twice in any one direction on the tic-tac-toe box gives zero. An

interesting consequence of this is that the gauge freedom in the WZ term (resulting from

ψ, C ′) has no effect upon the anomalous term M . Note however that using a different

background superspace will not only change the minimal algebra but can also change the

modification M (since the descent equations may have different solutions). We note that

left invariant WZ terms can only be constructed in such extended superspace backgrounds.

The result of main interest is that the topological anomalous term M is not gauge

invariant. Using (3.23):

∆M = s∆W (4.44)

= sdλ.

Although ∆M is a D coboundary, it need not be exact. ∆M can therefore be nonzero in the

presence of nontrivial topology (just as M can be). How much freedom do we have? At first

it seems that we have full gauge freedom at our disposal, but in practice the requirements

of Lorentz invariance and correct dimensionality are restrictive. In section 5 we will see

that in the case of the string, these requirements on the gauge fields reduce the freedom

in the anomalous term down to a single, global degree of freedom. A corresponding free

constant parameterizes the “spectrum of algebras” obtained from the process.
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Identifying gauge freedom in the anomalous term forces us to reevaluate its mathe-

matical nature. Since there is an orbit of gauge equivalent representatives, and there is no

natural basis upon which to fix a gauge, one can no longer speak of “the” anomalous term

if one defines it as a particular form or modified left generator algebra. In order that the

anomalous term be a well defined object it must be defined as an entire D cohomology class

[M ]. We have already seen that the representatives M of this class are D cohomologous

to H. Since s is exact, this correspondence is a bijection between the Hp+2,0 and Hp,2

cohomologies to which H and M belong. That is, to each cohomology class [H] ∈ Hp+2,0

is associated a unique class [M ] ∈ Hp,2 of the same triviality, and vice versa. The nature

of the resulting class [M ] depends on the background space being used.

First consider standard superspace. Since the class [H] is unique and nontrivial, [M ]

must also be unique and nontrivial. The classes [M ] must be labeled by a single pro-

portionality constant belonging to the field of scalars (just as the classes [H] are). The

difference between [H] and [M ] is that [H] consists of H only; there are no coboundaries

for the Hp+2,0 cohomology. In general there are coboundaries for the Hp,2 cohomology;

they are precisely the λ gauge transformations (and we will see that explicit, nonvanishing

examples of such gauge transformations do exist). The D cocycle of the p-brane therefore

has a set of equivalent representatives belonging to Ωp,2; it is this full set which makes the

anomalous term a well defined object.

If an extended superspace is used then H is a D coboundary. Based on the historical

derivation, one might argue that in this case the anomalous term should not even exist

(since a manifestly left invariant WZ term is possible). However, from the cohomology

point of view the anomalous term should consist of all possible modifications to the Noether

charges that are consistent with charge conservation. In the double complex construction,

charge conservation is guaranteed by the descent equations. The anomalous term [M ]

therefore becomes the space of D coboundaries within Ωp,2. This is identically equal to the

representatives ∆M resulting from the λ gauge transformations. Note that D coboundaries

need not be exact; it is therefore possible to obtain nonzero topological integrals for M

even in the case of a manifestly left invariant WZ term.

We summarize with the following:

4.3.2 Theorem on the nature of the anomalous term

The anomalous term is the restriction of Hp,2 to forms that are D cohomologous to H.

4.3.3 Uniqueness theorem

In the standard background, the anomalous term is the unique, Lorentz invariant, D non-

trivial class of dimensionality p + 1 (uniqueness is up to a proportionality constant).

From the second of these we conclude that in standard superspace it is possible to find

the anomalous term without solving descent equations. If a single D nontrivial represen-

tative within Hp,2 can be found then the entire anomalous term will be generated by the

λ gauge transformations. This class is unique (up to the constant of proportionality which

labels the classes). In superspaces which allow manifestly left invariant Lagrangians, the

anomalous term is the set of D coboundaries generated by the λ gauge transformations.
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Note that the above arguments apply only to the superspace representation M of the

anomalous term. The associated topological anomalous term M may vanish for topolog-

ical reasons separate from D cohomology. For example, if we choose to compactify no

dimensions, or if the brane does not “wrap”, then topological integrals such as M must

identically vanish. If we compactify only some dimensions then we may find that in stan-

dard superspace there do exist gauges in which the topological anomalous term vanishes,

since a gauge transformation may shift the form M into a trivial sector of the cohomology

of the spatial section. We will see an explicit example of this in section 5.

To summarize, the p-brane has an associated D cocycle defined by the representative

H ∈ Hp+2,0. The Noether charge algebra can be modified by a topological anomalous

term deriving from cocycle representatives M ∈ Hp,2. The representatives are not unique

due to the presence of λ gauge transformations of the cocycle. These transformations

themselves represent topological integrals which can be nonzero. The anomalous term is

well defined as a cohomology class, where elements related by λ gauge transformations

are to be considered equivalent. Since each representative of the anomalous term defines

an extended supertranslation algebra, each algebra in the spectrum can be considered as

being equivalent from a D cohomology point of view.

It is interesting to note that all the cocycle representatives of ghost degree two or less

have physical interpretations:

• H measures the modification to the right generator algebra.

• sB measures the left variation of the WZ term.

• sW measures the modification to the left generator algebra.

One may ask if any other representatives are significant. The only one remaining in the

case of the string is the ghost degree three element sN . Consider the following modified

algebra13:

[QA, QB} = −tAB
CQC + NAB . (4.45)

One finds that the Jacobi identity of this algebra is generated by sN :

(−1)ACsNABC = (−1)AC [QA, [QB , QC}} + cycles. (4.46)

sN therefore determines whether or not N can define an extended superalgebra. Based

on the cocycle triviality arguments we conclude that N defines extensions of extended

backgrounds, but not of the standard background. Applying the same argument to M

(and using sM = 0), we verify the claim of section 4.1 that M generates extensions of both

standard and extended backgrounds.

We finally note that the argument which shows that Hp+2,0 is unique in standard

superspace implies the same for H0,p+2. That is, the class containing sB0,p+1 consists of

one element. The components of sB0,p+1 must also be proportional to those of H since the

construction of a nontrivial representative in H0,p+2 has the same mathematical content

as the construction of a nontrivial representative in Hp+2,0.

13We present this for the sake of interest only since we have no physical interpretation for modified

algebras resulting from N .
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5. Application to the GS superstring

To illustrate the above formalism we consider the case of the GS superstring. After pre-

senting the action, the modified algebras of the left/right generators are found. The effect

of the cocycle gauge transformations is then investigated.

5.1 Superstring actions

We wish to study the effects that the following may have upon the results:

• Extending the background superspace (in order to allow manifestly symmetric WZ

terms to be used).

• Changing the WZ term.

For this purpose we use an action that has free parameters (“switches”). The action can be

used in the standard superspace background and also on the two extended ones of section

2. The switches allow one of three WZ terms to be used, or alternatively no WZ term at

all. The action is:

Sk,s,s = −
∫

d2σ
√−g

[
1 − k

2
εij

(
θΓi∂jθ − s

(
1 − s

2

)
∂iθ

µ∂jφµ

)
− ss∂iyn∂jx

n

]
. (5.1)

The switches k, s and s are restricted to the following values:
k = {−1, 0, 1} controls the existence and sign of the WZ term.

s = {0, 1} switches on a manifestly invariant WZ term.

s = {0, 1} controls the type of invariant WZ term.

k = 0 gives the NG action. For k 6= 0 we have three possibilities.

• s = 0 gives the standard WZ term on standard superspace. This results in the

standard κ symmetric GS superstring action. The corresponding Lagrangian is only

left invariant up to a total derivative.

• (s, s) = (1, 0) gives a manifestly left invariant WZ term that exists on the superspace

of the Green algebra [14, 15]. The resulting action can be brought to the form:

Sk,1,0 = −
∫

d2σ
√−g

[
1 +

k

2
εij(Li

αLjα)

]
, (5.2)

showing clearly the manifest left invariance. The WZ 2-form in this case is:

B =
k

2
LαLα. (5.3)

• (s, s) = (1, 1) gives another manifestly left invariant WZ term that exists on the

superspace of the extended Green algebra [16]. In this case:

B = −k

2
LaLa +

k

4
LαLα. (5.4)
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5.2 Constraint and right generator algebras

The action (5.1) yields the bosonic momentum:

Pm = −(−g)
1

2 g0iLi
aηam − k

2
θΓm∂1θ. (5.5)

The momenta other than Pm can be written in terms of Pm and ZM . These equations are

then written in the form of constraints on phase space14:

Cµ = Pµ +
1

2
(Γmθ)µPm +

k

2
La

1(Γaθ)µ +
k

4
ss(Γnθ)µ∂1yn (5.6)

−sk

2
(1 − s

2
)∂1φµ

Cm = Pm − k

2
ss∂1x

m

Cµ = Pµ − sk

2
(1 − s

2
)∂1θ

µ.

The 1-form B is found to be:

Bm = −k

2
θΓm∂1θ − k

2
ss∂1ym (5.7)

Bµ =
ks

2
(1 − s

2
)∂1φµ − k

2
∂1x

m(Γmθ)µ

B
m

=
k

2
ss∂1x

m

B
µ

=
ks

2
(1 − s

2
)∂1θ

µ.

In standard superspace, Cµ coincide with the right generators for the phase space, but for

the extended algebras it is the linear combinations of section 4.2.2 that generate the right

action. These are:

CA = LA
MPM − BA, (5.8)

where BA = LA
MBM .

For the string we require D=(3, 4, 6, 10) [20]. The Fierz identity becomes:

Γa
(αβΓaδ)ε = 0. (5.9)

Using this, the Poisson bracket algebra of the constraints is found to be:

{Cα(σ), Cβ(σ′)} = δ(σ − σ′)(Γa
αβD̃a + kΓaαβL1

a)(σ) (5.10)

[Ca(σ), Cβ(σ′)] = −δ(σ − σ′)Γa
βγCγ(σ),

with all other brackets vanishing. The second bracket is an example illustrating the fact

that although the modification Ha
β vanishes, the associated constraint bracket is nonzero

for the extended Green algebra because the minimal algebra has a noncentral generator

Σa. Note that the constraint Ca does not exist on standard or Green superspaces, and in

these cases only the first bracket is present.

14These are the “modified” constraints of the general section. We have dropped the tilde since we are no

longer considering the NG and GS actions separately.
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The algebra of right generators is slightly more general than (5.10) since there is

a generator Da that is not reflected as a constraint. Using the bar map (4.5) and the

components of H:

Hcβα = kΓcβα (5.11)

we obtain:

Hαβ = −kΓaαβL1
a (5.12)

Haβ = k(Γa∂1θ)β

as the only nonzero components of the modification. The first of these is seen to agree

with the first bracket of (5.10). The second is not present in the constraint case.

5.3 Left generator algebra

5.3.1 Standard superspace action

Let us find a representative of the anomalous term by solving the descent equations. First,

using the Fierz identity one finds for the variation of the WZ form:

QαB = −k

2
Lb(Γbdθ)α (5.13)

= −k

2
d

[
(dxb − 1

6
dθΓbθ)(Γbθ)α

]
.

The bosonic symmetries are manifest (i.e. QaB = 0). Thus:

W =
k

2
eα(dxb − 1

6
dθΓbθ)(Γbθ)α (5.14)

is a solution for the potential W . Evaluating M = sW and using the Fierz identity we find

that all θ dependence is lost:

Mαβ = kdxmΓmαβ , (5.15)

with all other components vanishing. Using the map (4.6) we then find M :

Mαβ = −k

∫
dσ1∂1x

mΓmαβ . (5.16)

This integral can be nonzero whenever the spatial section has nontrivial topology in the

bosonic sector. It is equivalent to the previously known result [8] except that we have

not needed to assume trivial fermionic topology. One of the new points is that (5.13)

determines W only up to a gauge transformation (which we have called λ). The resulting

anomalous term M is not gauge invariant under such transformations. In fact, we now

show that if fermionic topology is trivial then the topological anomalous term (5.16) is

gauge equivalent to zero.

The following gauge field satisfies the conditions of Lorentz invariance and dimension-

ality p + 1 = 2:

λ = −keaxbηab. (5.17)
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Let us find its effect upon the solutions (5.14) and (5.15) for W and M . Firstly:

∆W = dλ (5.18)

= −keadxbηab.

Using ∆M = sdλ we then find:

∆Mαβ = −kdxmΓmαβ (5.19)

∆Maβ = −k

2
(Γadθ)β

∆Mab = 0.

We see that ∆Mαβ is closed but not exact whenever dxm is. Now, the de Rham nontriviality

of dxm is the condition for which the original representative (5.16) is nonzero. Therefore,

in this case the gauge transformation ∆M is nonzero whenever M itself is.

After the gauge transformation, the alternative representative M ′ is:

M ′
aβ = −k

2
(Γadθ)β. (5.20)

We have thus traded nonzero Mαβ for nonzero Maβ . However, when converted to the

topological anomalous term this becomes a topological θ integral of the type (4.19):

M
′
aβ =

k

2

∫
dσ1(Γa∂1θ)β. (5.21)

Therefore, even if the standard quasi-invariant Lagrangian is used, when fermionic topology

is trivial, the topological charge algebra is gauge equivalent to the minimal algebra.

The more interesting case occurs when nontrivial fermionic topology is formally al-

lowed. In this case, the integral (5.21) can be nonzero. Let us repeat the above procedure

using instead the associated one parameter family of gauge transformations parameterized

by a constant a:

λ = −akeaxbηab. (5.22)

First we show that this is in fact the most general gauge transformation. There are two

more possibilities for λ with the correct Lorentz and dimensionality properties. The first

is:

λ′ = −ak

2
xaeΓaθ. (5.23)

Defining ∆′W = dλ′, one can verify that although ∆W differs from ∆′W , the algebra

modifications ∆M and ∆′M are the same. In the context of this paper it is the algebra itself

that is important, not any particular representation of its generators. The transformation

(5.23) is therefore equivalent to (5.22). The only other possibilities appear to be gauge

fields of the form:

λ′′ = eΓa1...abθθΓa1...ab
θ, (5.24)

where b is such that Γa1...abαβ is antisymmetric. These transformations leave M invariant,

and are hence redundant. We may therefore take (5.22) as the most general transformation.

Applying this to the representative (5.16) one finds the equivalence class [M ] of topological
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anomalous terms, with representatives parameterized by the gauge parameter a:

[M ]αβ = −(1 − a)kΓmαβ

∫
dσ1∂1x

m (5.25)

[M ]aβ =
ak

2

∫
dσ1(Γa∂1θ)β.

By introducing appropriately defined new generators we now show that this anomalous

term generates extended superalgebras. The new generators are simply the topological

charges:

Σ
a

=
k

2

∫
dσ1∂1x

a (5.26)

Σ
γ

=
k

2

∫
dσ1∂1θ

γ .

Note that Σ
a

and Σ
γ

are nonzero only when the associated superspace dimension is compact

and the spatial section of the string wraps around it. Upon adding these to the set of

conserved charges:

Q̃α = Rα
MPM − k

2

∫
dσ1(∂1x

m − 1

6
∂1θΓ

mθ)(Γmθ)α (5.27)

P̃ a = Ra
MPM + ak

∫
dσ1∂1x

mηma,

we then obtain the following algebra under Poisson bracket:

{Q̃α, Q̃β} = −Γb
αβP̃ b − 2(1 − a)ΓbαβΣ

b
(5.28)

[Q̃α, P̃ b] = −aΓbαγΣ
γ

[Q̃α,Σ
b
] = −1

2
Γb

αγΣ
γ
.

We will check that the Jacobi identity is satisfied. The only nontrivial possibility is:
[
Q̃α, {Q̃β, Q̃γ}

]
+ cycles = 3Γa

(αβΓaγ)δΣ
δ
, (5.29)

which vanishes by the Fierz identity. We note three special cases:

• For a = 1 the extra generator Σ
a

is redundant and may be excluded since it appears

nowhere on the RHS of a bracket. We then recover the Green algebra15.

• For a = 1
2 we rescale Σ

α
with a factor of 1

2 and recover the extended Green algebra.

• Turning off the gauge transformation altogether results in a variant in which P̃ a is

central. The structure of this algebra is of the type considered in [18]:

{Q,Q} ∼ P + P ′ (5.30)

[Q,P ′] ∼ Σ.

15Negative signs relative to the background superalgebras are expected due to the use of operators

instead of superalgebra generators. Redefinition of the operators with a sign reversal gives the background

superalgebra.
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An important point is that the spectrum (5.28) cannot be obtained by simply rescaling the

known algebras. It is therefore a generalization which yields new superalgebras.

We see that the outcome of the construction is a spectrum of superalgebras parame-

terized by a free constant. The algebras are constructed by identifying topological charges

with new superalgebra generators. One can then decompose the ideal arising from the topo-

logical anomalous term. The anomalous term, which is the modification to the Noether

charge algebra in the presence of the nontrivial WZ term, contains a gauge freedom. The

free constant of the algebra represents the part of the gauge freedom which is consistent

with Lorentz invariance and dimensionality requirements. The spectrum of algebras con-

tains the three superalgebra extensions that have so far been associated with the string.

We emphasize two departures from prior literature that were required:

• Since representatives of the anomalous term are not gauge invariant, it is well defined

only as an entire cohomology class. A free constant parameterizes the class.

• The fermionic extensions of the superalgebra resulting from the anomalous term

are topological integrals. If we formally allow nontrivial fermionic topology, these

charges can be physically realized. However, regardless of topological considerations,

the extended superalgebras generated by the mechanism can always be abstractly

realized in the operator-form representation.

5.3.2 Extended superspace actions

The motivation behind using an extended background superspace was to enable a mani-

festly left invariant WZ term to be used. The left invariant WZ form is generated by a ψ

gauge transformation on the standard WZ form:

s = 0:

∆B = −dψ (5.31)

=
k

2
dθµdφµ.

s = 1:

∆B = −dψ (5.32)

= −k

2
dxmdym +

k

4
dθµdφµ.

The manifest left invariance of the s = 1 action allows us to choose vanishing components

for W . M = 0 is then a representative of the anomalous term. As expected, M is therefore

D trivial for the extended superspace actions as a result of manifest left invariance.

When using extended superspaces it is just as valid to use the standard WZ term

as any other one (since they are gauge equivalent). Let us therefore consider using the

standard action on an extended superspace. In this case the extra available coordinates

still trivialize the anomalous term. For example, in the case of the Green algebra one can

modify W from (5.14) using:

∆W = dλ (5.33)

= −k

2
eαdφα.
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This completes W into an s closed form:

W = −k

2
eαLα. (5.34)

Therefore M = 0 in this gauge (even though W is non-zero). We see that even when a quasi-

invariant WZ term is used, the D cocycle is still trivialized by extending the superspace

appropriately. This is consistent with the general observation made in section 4.3 that

changing the WZ term does not affect the anomalous term; only changing the background

will have an effect.

In the extended superspace case there are many more possibilities for the λ gauge

transformations since one can form new λ fields using the extra coordinates. One might

further extend the extended background superalgebras in this way. However, the number

of possibilities for λ is considerable and the algebras obtained can be large. Since there is

currently no direct physical application of such algebras (unlike the extensions of standard

superspace considered in this paper) we will not pursue this possibility here.

6. Comments

In section 5.3.1, the spectrum of algebras for the superstring was shown to contain three

known extended algebras. Two of these (the Green algebra and extended Green algebra)

have already found application in allowing a manifestly left invariant string WZ term to

be constructed. It turns out that the entire spectrum (5.28) of algebras for the superstring

can be used this way. We find that the general solution for the WZ form B takes the same

form as in (5.4) (the calculation is quite simple and will not be given here). In the general

p-brane case it is possible that the cocycle approach may generate those superalgebras

which allow the construction of left invariant WZ forms. Work on this issue is currently in

preparation.

In this work our attention has been restricted to p-branes only for brevity. Similar

principles to those of the p-brane WZ term also apply to the WZ terms of D-branes and

M-branes [16]. The additional feature of these branes is the presence of worldvolume gauge

fields. With minimal modifications to allow for these fields, the cocycle construction can

also be applied to these branes. For the traditional (bosonic topology only) approach to

Noether charge algebras of D-branes and M-branes see [10, 23, 24]. Work on D-brane

charge algebras using the methods of this paper is currently in preparation.

The previously derived structure of the anomalous term arises in the cocycle con-

struction in a particular choice of gauge. This simplified structure relates to the PBRS

construction, where the modified algebra is written in the form of a projector [11]. This

represents the physical situation in supergravity field theory where half the supersymme-

tries are broken. The work of this paper shows that allowing for λ gauge freedom results in

an expanded definition of the anomalous term. It would be interesting to revisit the PBRS

construction to determine whether the new possibilities for the anomalous term can be

incorporated. Ideally one would like to find a generalization of PBRS which is λ covariant.
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A. Appendices

A.1 Standard vielbein components

A.1.1 LM
A components

Lm
a = δm

a, Lm
α = 0

Lµ
a = −1

2(Γaθ)µ, Lµ
α = δµ

α

A.1.2 LA
M components

La
m = δa

m, La
µ = 0

Lα
m = 1

2(Γmθ)α, Lα
µ = δα

µ

A.1.3 RM
A components

Rm
a = δm

a, Rm
α = 0

Rµ
a = 1

2(Γaθ)µ, Rµ
α = δµ

α

A.1.4 RA
M components

Ra
m = δa

m, Ra
µ = 0

Rα
m = −1

2(Γmθ)α, Rα
µ = δα

µ

A.2 Green algebra vielbein components

A.2.1 LM
A components

Lm
a = δm

a, Lm
α = 0, Lmα = −(Γmθ)α

Lµ
a = −1

2(Γaθ)µ, Lµ
α = δµ

α, Lµα = 1
6(Γbθ)µ(Γbθ)α

Lµa = 0, Lµα = 0, Lµ
α = δµ

α

A.2.2 LA
M components

La
m = δa

m, La
µ = 0, Laµ = (Γaθ)µ

Lα
m = 1

2(Γmθ)α, Lα
µ = δα

µ, Lαµ = 1
3(Γbθ)α(Γbθ)µ

Lαm = 0, Lαµ = 0, Lα
µ = δα

µ

A.2.3 RM
A components

Rm
a = δm

a, Rm
α = 0, Rmα = 0

Rµ
a = 1

2(Γaθ)µ, Rµ
α = δµ

α, Rµα = −xbΓbµα + 1
6(Γbθ)µ(Γbθ)α

Rµa = 0, Rµα = 0, Rµ
α = δµ

α

A.2.4 RA
M components

Ra
m = δa

m, Ra
µ = 0, Raµ = 0

Rα
m = −1

2(Γmθ)α, Rα
µ = δα

µ, Rαµ = xbΓbαµ − 1
6 (Γbθ)α(Γbθ)µ

Rαm = 0, Rαµ = 0, Rα
µ = δα

µ
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A.3 Extended Green algebra vielbein components

A.3.1 LM
A components

Lm
a = δa

m, Lm
α = 0, Lma = 0, Lmα = −(Γmθ)α

Lµ
a = −1

2(Γaθ)µ, Lµ
α = δµ

α, Lµa = −1
2(Γaθ)µ, Lµα = 1

3 (Γbθ)µ(Γbθ)α
Lma = 0, Lmα = 0, Lm

a = δm
a, Lm

α = −(Γmθ)α
Lµa = 0, Lµα = 0, Lµ

a = 0, Lµ
α = δµ

α

A.3.2 LA
M components

La
m = δa

m, La
µ = 0, Lam = 0, Laµ = (Γaθ)µ

Lα
m = 1

2(Γmθ)α, Lα
µ = δα

µ, Lαm = 1
2(Γmθ)α, Lαµ = 2

3(Γbθ)α(Γbθ)µ
Lam = 0, Laµ = 0, La

m = δa
m, La

µ = (Γaθ)µ
Lαm = 0, Lαµ = 0, Lα

m = 0, Lα
µ = δα

µ

A.3.3 RM
A components

Rm
a = δm

a, Rm
α = 0, Rma = 0, Rmα = 0

Rµ
a = 1

2(Γaθ)µ, Rµ
α = δµ

α, Rµa = 1
2(Γaθ)µ, Rµα = −xbΓbµα − ybΓ

b
µα

+1
3(Γbθ)µ(Γbθ)α

Rma = 0, Rmα = 0, Rm
a = δm

a, Rm
α = 0

Rµa = 0, Rµα = 0, Rµ
a = 0, Rµ

α = δµ
α

A.3.4 RA
M components

Ra
m = δa

m, Ra
µ = 0, Ram = 0, Raµ = 0

Rα
m = −1

2(Γmθ)α, Rα
µ = δα

µ, Rαm = −1
2(Γmθ)α, Rαµ = +xbΓbαµ + ybΓ

b
αµ

−1
3(Γbθ)α(Γbθ)µ

Ram = 0, Raµ = 0, Ra
m = δa

m, Ra
µ = 0

Rαm = 0, Rαµ = 0, Rα
m = 0, Rα

µ = δα
µ

A.4 Constraints for the p-brane action

Here we show that the constraints in the presence of the WZ term take the simple form

(4.40) in both standard and extended backgrounds. The structure of the definitions of

momenta may be written as the vanishing of functions C̃M (one for each coordinate):

C̃M = PM − P
(NG)
M − BM , (A.1)

where the terms P
(NG)
M are the functions of (Z, Ż) obtained as momenta from the NG

action. However, P
(NG)
M are nonzero only for the standard superspace coordinates, and

they are related by:

P (NG)
µ = −1

2
(Γmθ)µP (NG)

m (A.2)

⇒ Lα
MP

(NG)
M = 0.

For M 6= m, the C̃M are constraints. Consider then the linear combinations:

LA
M C̃M , M 6= m. (A.3)
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One can generate new sets of constraints by taking such linear combinations as long as

the constraint surface so defined remains unchanged. This will be true provided that we

maintain a “linearly independent” combination of the original constraints (which are all

independent in the sense of intersecting surfaces). The linear combinations (A.3) will then

be constraints of the form:

C̃A = LA
M (PM − BM ), A 6= a (A.4)

provided that:

LA
MP

(NG)
M = 0. (A.5)

Denote the extra generators of the superalgebra by TǍ. These generators are assumed

to form an ideal. It follows that the standard coordinates do not transform under the

left/right group actions generated by TǍ. From this it follows that the components of the

inverse vielbeins satisfy:

LǍ
m = LǍ

µ = 0 (A.6)

RǍ
m = RǍ

µ = 0.

Using this and (A.2), the required result (A.5) follows. The constraints can therefore be

written in the form of equation (4.40).
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